15 research outputs found

    A low variance consistent test of relative dependency

    Get PDF
    We describe a novel non-parametric statistical hypothesis test of relative dependence between a source variable and two candidate target variables. Such a test enables us to determine whether one source variable is significantly more dependent on a first target variable or a second. Dependence is measured via the Hilbert-Schmidt Independence Criterion (HSIC), resulting in a pair of empirical dependence measures (source-target 1, source-target 2). We test whether the first dependence measure is significantly larger than the second. Modeling the covariance between these HSIC statistics leads to a provably more powerful test than the construction of independent HSIC statistics by sub-sampling. The resulting test is consistent and unbiased, and (being based on U-statistics) has favorable convergence properties. The test can be computed in quadratic time, matching the computational complexity of standard empirical HSIC estimators. The effectiveness of the test is demonstrated on several real-world problems: we identify language groups from a multilingual corpus, and we prove that tumor location is more dependent on gene expression than chromosomal imbalances. Source code is available for download at https://github.com/wbounliphone/reldep.Comment: International Conference on Machine Learning, Jul 2015, Lille, Franc

    Statistically and Computationally Efficient Hypothesis Tests for Similarity and Dependency

    No full text
    The dissertation present novel statistically and computationally efficient hypothesis tests for relative dependency, similarity, and precision matrix estimation. The key methodology adopted in this thesis is the class of \ustat estimator. The class of \ustat allows a minimum-variance unbiased estimation of a parameter. We make use of asymptotic distributions and strong consistency of the \ustat estimator to develop novel non-parametric statistical hypothesis tests. In the first part of the thesis, we will focus mainly focus on developing a novel non-parametric statistical hypothesis test for relative dependency. Test of dependence are important tools in statistical analysis. For many problems in data analysis, however, the question of multiple dependencies is secondary. We present a statistical test which determine whether one variables is significantly more dependent on a first target variable or a second. Dependence is measure via the Hilbert-Schmidt Independence Criterion (HSIC). On the other hand, this thesis will focus the problem of model selection. Probabilistic generative models provide a powerful framework for representing data. Model selection in this generative setting can be challenging, particularly when likelihoods are not easily accessible. To address this issue, we provide a novel non-parametric hypothesis test of relative similarity and test whether a first candidate model generates sample significantly closer to a reference validation set. Our model selection criterion is based on the Maximum Mean discrepancy (MMD) and measure the distance of the generated samples to some reference target set. The resulting test of dependence and relative similarity are consistent and unbiased (being based on \ustat) and can be computed in quadratic time. Finally, a novel method for estimating the precision matrix is proposed. Methods for structure discovery in the literature typically make restrictive distributional or sparsity assumptions that may not apply to a data sample of interest, and direct estimation of the uncertainty of an estimate of the precision matrix for general distributions remains challenging. Consequently, we derive a new test that makes use of results for \ustat and applies them to the covariance matrix. The resulting test enables one to answer with statistical significance whether an entry in the precision matrix is non-zero, and convergence results are known for a wide range of distributions. The computational complexity is linear in the sample size.Bounliphone W., ''Statistically and computationally efficient hypothesis tests for similarity and dependency'', Proefschrift voorgedragen tot het behalen van het doctoraat in de ingenieurswetenschappen, KU Leuven, January 2017, Leuven, Belgium.status: publishe

    Statistically and computationally efficient hypothesis tests for similarity and dependency

    No full text
    Cette thèse présente de nouveaux tests d’hypothèses statistiques efficaces pour la relative similarité et dépendance, et l’estimation de la matrice de précision. La principale méthodologie adoptée dans cette thèse est la classe des estimateurs U-statistiques.Le premier test statistique porte sur les tests de relative similarité appliqués au problème de la sélection de modèles. Les modèles génératifs probabilistes fournissent un cadre puissant pour représenter les données. La sélection de modèles dans ce contexte génératif peut être difficile. Pour résoudre ce problème, nous proposons un nouveau test d’hypothèse non paramétrique de relative similarité et testons si un premier modèle candidat génère un échantillon de données significativement plus proche d’un ensemble de validation de référence.La deuxième test d’hypothèse statistique non paramétrique est pour la relative dépendance. En présence de dépendances multiples, les méthodes existantes ne répondent qu’indirectement à la question de la relative dépendance. Or, savoir si une dépendance est plus forte qu’une autre est important pour la prise de décision. Nous présentons un test statistique qui détermine si une variable dépend beaucoup plus d’une première variable cible ou d’une seconde variable.Enfin, une nouvelle méthode de découverte de structure dans un modèle graphique est proposée. En partant du fait que les zéros d’une matrice de précision représentent les indépendances conditionnelles, nous développons un nouveau test statistique qui estime une borne pour une entrée de la matrice de précision. Les méthodes existantes de découverte de structure font généralement des hypothèses restrictives de distributions gaussiennes ou parcimonieuses qui ne correspondent pas forcément à l’étude de données réelles. Nous introduisons ici un nouveau test utilisant les propriétés des U-statistics appliqués à la matrice de covariance, et en déduisons une borne sur la matrice de précision.The dissertation presents novel statistically and computationally efficient hypothesis tests for relative similarity and dependency, and precision matrix estimation. The key methodology adopted in this thesis is the class of U-statistic estimators. The class of U-statistics results in a minimum-variance unbiased estimation of a parameter.The first part of the thesis focuses on relative similarity tests applied to the problem of model selection. Probabilistic generative models provide a powerful framework for representing data. Model selection in this generative setting can be challenging. To address this issue, we provide a novel non-parametric hypothesis test of relative similarity and test whether a first candidate model generates a data sample significantly closer to a reference validation set.Subsequently, the second part of the thesis focuses on developing a novel non-parametric statistical hypothesis test for relative dependency. Tests of dependence are important tools in statistical analysis, and several canonical tests for the existence of dependence have been developed in the literature. However, the question of whether there exist dependencies is secondary. The determination of whether one dependence is stronger than another is frequently necessary for decision making. We present a statistical test which determine whether one variables is significantly more dependent on a first target variable or a second.Finally, a novel method for structure discovery in a graphical model is proposed. Making use of a result that zeros of a precision matrix can encode conditional independencies, we develop a test that estimates and bounds an entry of the precision matrix. Methods for structure discovery in the literature typically make restrictive distributional (e.g. Gaussian) or sparsity assumptions that may not apply to a data sample of interest. Consequently, we derive a new test that makes use of results for U-statistics and applies them to the covariance matrix, which then implies a bound on the precision matrix

    Tests d’hypothèses statistiquement et algorithmiquement efficaces de similarité et de dépendance

    No full text
    The dissertation presents novel statistically and computationally efficient hypothesis tests for relative similarity and dependency, and precision matrix estimation. The key methodology adopted in this thesis is the class of U-statistic estimators. The class of U-statistics results in a minimum-variance unbiased estimation of a parameter.The first part of the thesis focuses on relative similarity tests applied to the problem of model selection. Probabilistic generative models provide a powerful framework for representing data. Model selection in this generative setting can be challenging. To address this issue, we provide a novel non-parametric hypothesis test of relative similarity and test whether a first candidate model generates a data sample significantly closer to a reference validation set.Subsequently, the second part of the thesis focuses on developing a novel non-parametric statistical hypothesis test for relative dependency. Tests of dependence are important tools in statistical analysis, and several canonical tests for the existence of dependence have been developed in the literature. However, the question of whether there exist dependencies is secondary. The determination of whether one dependence is stronger than another is frequently necessary for decision making. We present a statistical test which determine whether one variables is significantly more dependent on a first target variable or a second.Finally, a novel method for structure discovery in a graphical model is proposed. Making use of a result that zeros of a precision matrix can encode conditional independencies, we develop a test that estimates and bounds an entry of the precision matrix. Methods for structure discovery in the literature typically make restrictive distributional (e.g. Gaussian) or sparsity assumptions that may not apply to a data sample of interest. Consequently, we derive a new test that makes use of results for U-statistics and applies them to the covariance matrix, which then implies a bound on the precision matrix.Cette thèse présente de nouveaux tests d’hypothèses statistiques efficaces pour la relative similarité et dépendance, et l’estimation de la matrice de précision. La principale méthodologie adoptée dans cette thèse est la classe des estimateurs U-statistiques.Le premier test statistique porte sur les tests de relative similarité appliqués au problème de la sélection de modèles. Les modèles génératifs probabilistes fournissent un cadre puissant pour représenter les données. La sélection de modèles dans ce contexte génératif peut être difficile. Pour résoudre ce problème, nous proposons un nouveau test d’hypothèse non paramétrique de relative similarité et testons si un premier modèle candidat génère un échantillon de données significativement plus proche d’un ensemble de validation de référence.La deuxième test d’hypothèse statistique non paramétrique est pour la relative dépendance. En présence de dépendances multiples, les méthodes existantes ne répondent qu’indirectement à la question de la relative dépendance. Or, savoir si une dépendance est plus forte qu’une autre est important pour la prise de décision. Nous présentons un test statistique qui détermine si une variable dépend beaucoup plus d’une première variable cible ou d’une seconde variable.Enfin, une nouvelle méthode de découverte de structure dans un modèle graphique est proposée. En partant du fait que les zéros d’une matrice de précision représentent les indépendances conditionnelles, nous développons un nouveau test statistique qui estime une borne pour une entrée de la matrice de précision. Les méthodes existantes de découverte de structure font généralement des hypothèses restrictives de distributions gaussiennes ou parcimonieuses qui ne correspondent pas forcément à l’étude de données réelles. Nous introduisons ici un nouveau test utilisant les propriétés des U-statistics appliqués à la matrice de covariance, et en déduisons une borne sur la matrice de précision

    A U-statistic Approach to Hypothesis Testing for Structure Discovery in Undirected Graphical Models

    Get PDF
    Structure discovery in graphical models is the determination of the topology of a graph that encodes conditional independence properties of the joint distribution of all variables in the model. For some class of probability distributions, an edge between two variables is present if and only if the corresponding entry in the precision matrix is non-zero. For a finite sample estimate of the precision matrix, entries close to zero may be due to low sample effects, or due to an actual association between variables; these two cases are not readily distinguishable. %Fisher provided a hypothesis test based on a parametric approximation to the distribution of an entry in the precision matrix of a Gaussian distribution, but this may not provide valid upper bounds on pp-values for non-Gaussian distributions. Many related works on this topic consider potentially restrictive distributional or sparsity assumptions that may not apply to a data sample of interest, and direct estimation of the uncertainty of an estimate of the precision matrix for general distributions remains challenging. Consequently, we make use of results for UU-statistics and apply them to the covariance matrix. By probabilistically bounding the distortion of the covariance matrix, we can apply Weyl's theorem to bound the distortion of the precision matrix, yielding a conservative, but sound test threshold for a much wider class of distributions than considered in previous works. The resulting test enables one to answer with statistical significance whether an edge is present in the graph, and convergence results are known for a wide range of distributions. The computational complexities is linear in the sample size enabling the application of the test to large data samples for which computation time becomes a limiting factor. We experimentally validate the correctness and scalability of the test on multivariate distributions for which the distributional assumptions of competing tests result in underestimates of the false positive ratio. By contrast, the proposed test remains sound, promising to be a useful tool for hypothesis testing for diverse real-world problems
    corecore